Researchers Develop Entangled Light Source That Produces Two Entangled Light Beams
Researchers Develop Entangled Light Source That Produces Two Entangled Light Beams

Researchers Develop Entangled Light Source That Produces Two Entangled Light Beams

Researchers Develop Entangled Light Source That Produces Two Entangled Light Beams!

Quantum entanglement, which happens when two or more systems are produced or interact in such a way that the quantum states of some cannot be characterized independently of the quantum states of others, is being studied by scientists more and more. Even when the systems are far apart, they are still correlated. Research is encouraged by the substantial potential for applications in communications, cryptography, and quantum computing. The problem is that the systems instantly detangle when interacting with their environment.

Brazilian researchers from the Laboratory for Coherent Manipulation of Atoms and Light (LMCAL) at the Physics Institute of the University of So Paulo (IF-USP) succeeded in creating a light source that generated two entangled light beams. Physical Review Letters cover the results of their research.

“An optical parametric oscillator, or OPO, which typically consists of a non-linear visual response crystal sandwiched between two mirrors to form an optical cavity, was the source of this light. Two light beams with quantum correlations are produced by the crystal-mirror dynamics when a solid green laser beam strikes the apparatus “Hans Marin Florez, a physicist and the article’s final author, said this.

Read also:

The issue is that because the light emitted by crystal-based OPOs has a different wavelength than the systems in question, such as cold atoms, ions, or chips, it cannot interact with other methods of relevance in the context of quantum information. “In earlier work, our team demonstrated that atoms may be employed as a medium rather than a crystal. Thus, using rubidium atoms as the basis, we created the first OPO with two beams that were strongly quantum correlated and obtained a source that may interact with other systems that might operate as quantum memory, such as cold atoms, “Florez said.

This did not, however, prove that the beams were intertwined. The beams’ phases, which have to do with light wave synchronization, were also necessary to show quantum correlations. In the latest study published in Physical Review Letters, we precisely accomplished it, he stated.

“We repeated the same experiment while including new detection procedures that allowed us to quantify the quantum correlations in the amplitudes and phases of the produced fields. We were able to demonstrate their interconnection as a result. Additionally, we could see that the entanglement structure was richer than would generally be characterized, thanks to the detection method. What we truly created was a system composed of four entangled spectral bands, not just two neighboring ones.”

In this instance, the wave amplitudes and phases were mixed up. This is crucial to many protocols used to handle and transmit information that has been quantum-coded. In addition to these potential uses, this light source may also be employed in metrology. According to Florez, quantum intensity correlations lead to a significant decrease in intensity fluctuations, which can improve the sensitivity of optical sensors. “Try to hear someone across the room at a party where everyone is talking at once.

If everyone stops talking and the noise level drops enough, you can hear what someone is saying from a fair distance away.” He continued that one of the potential applications is boosting the sensitivity of atomic magnetometers used to gauge the alpha waves produced by the human brain.

An additional benefit of rubidium OPOs over crystal OPOs is also mentioned in the paper. The use of an atomic medium, in which the two beams are produced more efficiently than with crystals, avoids the need for mirrors to imprison the light for such a long time, according to Florez. “Crystal OPOs have to have mirrors that keep the light inside the cavity for longer so that the interaction produces correlated quantum beams,” Florez said.

Other teams had attempted to create OPOs using atoms before his team did, but they could not show quantum correlations in the light beams they generated. The results of the new experiment demonstrated that there was no systemic limit that would have prevented this. “We found that observing quantum correlations depends critically on the atoms’ temperature. The researchers could not detect links in the other investigations since they were conducted at greater temperatures, “added he.

About Lionel Holmes 1849 Articles
Lionel Holmes is a journalism graduate with keen interest in covering Technology  news – specifically startups. He has as a keen eye for technologies and has predicted quite a few successful startups over the last couple of years. Lionel goal with this website is to report accurately on all kinds of stock news, and have a great deal of passion for Finance and active reporting. Lionel is diligent and proactive when it comes to Technology news reporting.

Leave a Reply

Your email address will not be published.


*